Tag Archives: evolution

How else do pollinators benefit from plants?

bees

Plants primarily attract pollinators by offering nectar rewards (as a source of sugar for energy) and pollen (as a protein source for developing young). In return, the pollinator will pass on the plant’s genetic material for sexual reproduction. Using this animal vector is much more efficient than relying on wind pollination, but how does the pollinator benefit from this interaction? Besides nectar and pollen, what other rewards can flowers offer? How can plants sometimes ‘deceive’ pollinators by providing a false reward?

Some neotropical plants, including orchids, produce scent which is collected by the males of Euglossine bees to use as pheromones for courtship. The bees secrete saliva full of lipids onto the floral surface, which absorbs the scent compounds and is then collected by the bee’s ‘corbicula’, a modified pollen basket. Whilst the bees are collecting these female-attracting scents, the orchid’s specialized anthers deposit a ‘pollonium’ onto the back of the bee.

Pollinators have also been found to consume floral tissues (the plant itself!) as a reward for assisting with reproduction. Beetle species often consume floral tissues but also act as pollinators. For example cycads are often pollinated by specialized weevils that eat the cycad ‘flowers’ called cones. To limit the damage done, the plants often produce low concentrations of secondary metabolite (toxins) that accumulate in the insect and this limits the amount of floral tissue the pollinator can eat.

Other specialized plant-pollinator mutualisms has the plant producing oils which are used by bees to build nests and feed larvae. In many cases these fatty acid secretions are made rather than nectar, which means a more specialized pollinator can co-evolve with the plant. This leads to more efficient pollination as the insect is limited to only travelling and distributing pollen between a few plant species.

Sometimes pollination occurs by deceit. The dead horse arum produces chemical compounds that mimic those produced by carcasses. This attracts carrion flies and traps them in the flower overnight, covering them with pollen. Orchids of the genus Ophrys emit compounds which mimic female wasp pheromones and have visual displays that look similar to female wasps. The male wasp visits and attempts to mate with the flower, but inadvertetly pollinates it if fooled twice! Neither of these plants reward the pollinator with food (or otherwise) for pollinating it- this one sided ecological interaction is known as ‘commensalism’.

Many different incentives to attract insect pollinators to specialise on a particular species (or genus) of plant exist. The bizarre strategy of the fig tree has a chalcid wasp insert its long ovipositor to lay its eggs inside the fig fruits. The fig tree grows it’s flowers inside the fig fruits so the wasp actually pollinates it in return for the plant providing a habitat and food source for the developing larvae. Other plants have been shown to ‘cheat’ and deceive their pollinators into accepting a non-existent reward (like the wild orchid wasp mimic). However recent research has found that bumblebees have a preference for plant scent compounds that give an honest indication of reward quality. Plant resources put towards reward quality is limiting however, so an equilibrium exists between the evolution of cheaters and ‘honest’ signallers.

 

Irwin, R. E., Adler, L. S., & Brody, A. K. (2004). The dual role of floral traits: pollinator attraction and plant defense. Ecology, 85(6), 1503-1511.

Knauer, A. C., Schiestl, F. P. (2014), Bees use honest floral signals as indicators of reward when visiting flowers. Ecology Letters. doi: 10.1111/ele.12386

Simpson, B. B., & Neff, J. L. (1981). Floral rewards: alternatives to pollen and nectar. Annals of the Missouri Botanical Garden, 301-322.

Advertisements

How do Social Insects make Decisions?

beesmed

Using information passed on by others can greatly improve individual fitness, and has been the fundamental mechanism underlying the evolution of social insects such as bees, wasps, ants and termites. However in some situations it is better to ignore social information and for an individual to use its own prior knowledge and experience. So how do these colony-forming insects tailor their reliance on social information for the benefit of the ‘superorganism’? Scientists have recently reviewed the literature and made theories as to the nature of decision making in insects.

Social information is relatively ‘cheap’ to obtain for hymenopteran foragers, because they can bypass the costs associated with exploration and food sources obtained socially are likely to be better quality. In the truly eusocial western honeybee, Apis mellifera, generations overlap so information passed on by the ‘waggle dance’ (movements conveying location and quality of food sources) increases the fitness of that colony. Foraging choice are further refined by chemical cues (pheromone trails) and simply presence of other foragers.

Relying on social information may also incur costs and may not lend an evolutionary advantage. In the case of the ant forager, if she ignores social information she may find a novel food source that will benefit the colony as a whole, whilst a well-used food source is depleted (I.e. exploration produces more up-to-date information). Honeybees that rely on dance information may take time to find a dancer and may need multiple viewing and excursions to find the communicated food source.

A trade-off between these advantages and disadvantages will adjust how often (and what proportion of) social insects rely on social information. All animals tend to display the most profitable information they know, so relying on social information may be more profitable than exploration. For example honeybees only communicate their dance after finding high quality food sources. ‘Social learning strategies’ in animals are genetically determined in response to environmental and social cues. One such approach is the ‘copy if dissatisfied’ strategy, where animals will use social information if their current information is below a fitness ‘threshold’. These optimum social learning strategies can also be acquired (ironically) through social learning.

Grüter, C., & Leadbeater, E. (2014). Insights from insects about adaptive social information use. Trends in ecology & evolution, 29(3), 177-184.