Monthly Archives: January 2017

Miles From Home: How Ants can Navigate Long Distances (and back!) to Forage

Ants are well known for their extraordinary ability to find food, and bring back enough to feed their vast social organisations. Being able to form relationships with other organisms that digest food, carry objects 50 times their weight and achieve great feats of communication and learning all help them forage… but how exactly do they find their way? Recent research from the University of Edinburgh has concluded the fascinating story of how the Formicidae navigate.

Plot a Course! Direction of Travel

Ants can decide on a direction for walking by using the position of the Sun in their visual field, as specialised cells in their compound eyes can detect the UV polarised light emitted by the Sun. Ants can maintain the correct course, whilst decoupling information where their body is an which direction they are travelling in. They also make use of visual landmarks (such as leaf litter), olfactory and tactile cues, and some species use the Earth’s magnetic field for navigation. According to the researchers at the University of Edinburgh, the ants construct a more sophisticated representation than they thought possible from the small size of their ganglia (brains), and can integrate information from different modalities (and from different areas of the brain) into the representation of direction.

How Far? Keeping track of Distance

Day-foraging ants, such as those in the genus Cataglyphis, are able to navigate exceptionally long distance (up to 200 metres and back!) by recording the distance they have travelled as well as the direction. An internal pedometer helps the ant remember the number of steps taken and this information is integrated with the ‘optical flow’ of objects moving around their visual field (which is an illusion- of course it is actually the ant that moves). Rather than each ant randomly roving away from the hive in search of food, the successful ‘pioneer’ must communicate the location to her sisters so they can make a sortie to the high quality patch of forage en masse…

neivamyrmex_army_ants_raiding_trail.jpg

Follow the Leader: Scent Trails

The long line of ants that you are bound to see in tropical forests are formed from scent trails that allow them to navigate back home, even if it is 200 metres away and in the dark! The ability to find the shortest route back is a crucial adaptation for avoiding desiccation in hot and arid environments. However, in army ant species, a group of foragers who become separated from the main marching column can turn back and form a circular ant mill, and run round constantly until they die of exhaustion! Ants have also been recorded to carry each other along a route, if an older and more experience forager notices that an internal nest worker (which are less familiar with the outdoor environment) is off the trail.

Final Word

So ants are able to backtrack to the location of their nest using their memories and the Sun as a reference point, and the way they operate is very similar to a self-driving car. This new research gives a unique insight into how brains of ants (and other insects) operate, and will inspire the next developments in robot system building to mimic their functioning, which would especially be useful for robots that need to navigate in forested areas. Modelling the neural circuits in the ant brain will also be useful to simply understanding more about the complex behaviours of the fascinating family of insects.

Further Reading

http://www.cell.com/current-biology/fulltext/S0960-9822(16)31466-X

http://jeb.biologists.org/content/209/1/26

http://science.sciencemag.org/content/353/6304/1155